
Pricing under rough volatility Simulating rough volatility Variance reduction methods

Turbocharging Monte Carlo pricing
under rough volatility

Mikko Pakkanen

Department of Mathematics, Imperial College London, UK

Jim Gatheral’s 60th Birthday Conference
Courant Institute, New York, 14 October 2017

Joint work with Ryan McCrickerd

Ω

F

P

Imperial Network of Excellence in

Probabilistic
Methods and Modelling



Pricing under rough volatility Simulating rough volatility Variance reduction methods

Volatility is (still) rough — 3rd anniversary!
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The rough Bergomi model
The rough Bergomi model (Bayer, Friz, and Gatheral, 2016) is a
non-Markovian extension of the variance curve model of
Bergomi (2005).

This model, under a pricing measure, is given by

dSt
St

=
√
Vt

�
ρdWs +

√
1 − ρ2dW⊥s

�︸                        ︷︷                        ︸
=:Bs

,

where W and W⊥ are independent Brownians and ρ ∈ [−1, 1].
The spot variance Vt is a product Vt = ξ0(t)E(ηWα )t of
• the forward variance curve t 7→ ξ0(t), known at time 0,
• the Wick exponential E(ηWα )t = exp

�
ηWα

t −
1
2Var[ηW

α
t ]

�
of

a parameter η > 0 times a Gaussian random variable Wα
t .
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The rough Bergomi model (cont.)

The random variable Wα
t follows the Gaussian Riemann–

Liouville process

Wα
t =
√
2α + 1

∫ t

0
(t − s)αdWs, t ≥ 0,

where the parameter α ∈ (− 12 ,0) controls the roughness of
paths.

The paths of Wα have Hölder regularity α + 1
2 and locally look

like the paths of a fractional Brownian motion with

H = α + 1
2 .
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Example: rough Bergomi paths
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Intuition on the parameters

The rough Bergomi model has three time-homogeneous
parameters, α , η, and ρ, with the following interpretations in
terms of the implied volatility surface:
• η — smile,
• ρ — skew,
• α — near-maturity explosion (of smile and skew).
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Example: rough Bergomi smiles
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Example: rough Bergomi smiles
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Pricing by Monte Carlo
The introduction of the rough Bergomi model has launched a
quest for efficient pricing methods for the model.

The model is non-affine and non-Markovian so standard
methods (PDEs, characteristic functions) seem inapplicable.

Currently, the only operational pricing method for mere
vanilla options is Monte Carlo.

Thus it is worthwhile to try to optimise, “turbocharge”, Monte
Carlo pricing as much as possible.

In general, a good Monte Carlo pricer should have:
• low bias, to avoid systematic error,
• low variance, such that good accuracy can be achieved in
reasonable runtime.
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Simulating the rough Bergomi model
The rough Bergomi model has a simple stochastic structure —
all randomness comes from a bivariate Gaussian process
(B,Wα ), while S can be approximated by Riemann sums.

The covariance structure of (B,Wα ) is not difficult to work out,
so we could simulate exactly

X :=
�
(B0,Wα

0 ), (B1/n,Wα
1/n), (B2/n,W

α
2/n), . . . , (B�nt /n,W

α
�nt /n)

�

by sampling from a 2�nt -dimensional Gaussian distribution.

The simulation is based on the Cholesky factorisation of the
covariance matrix of X, which requires O(n3) flops.

The Cholesky factor needs to be computed only once, but
subsequent realisations of X still take O(n2) flops.
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Approximating the process Wα

Exact simulation being too expensive, we seek to approximate
the process Wα .

A naive approach would be to use forward Riemann sums

Wα
i/n =

i∑
k=1

∫ i
n−

k−1
n

i
n−

k
n

� i
n−s

�αdWs ≈
i∑
k=1

� k
n

�α (
W i

n−
k−1
n
−W i

n−
k
n

)
=: Ŵα ,n

i/n .

Since Ŵα ,n
i/n is a discrete convolution, Ŵ

α ,n
0 , Ŵ

α ,n
1/n , . . . , Ŵ

α ,n
�nt /n can

be generated (using FFT) in O(n logn) flops.
However:
• Forward Riemann sums are inaccurate since the
integrand s 7→

� i
n − s

�α has a singularity.
• This leads to biased estimates of implied volatility.
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The hybrid scheme
The hybrid scheme of Bennedsen, Lunde, and Pakkanen (2017)
fixes the deficiencies of forward Riemann sums by using:

W̃α ,n
i/n :=

κ∑
k=1

∫ i
n−

k−1
n

i
n−

k
n

� i
n − s

�αdWs︸                           ︷︷                           ︸
exact for κ slices

+
i∑

k=κ+1

�bk
n

�α (
W i

n−
k−1
n
−W i

n−
k
n

)
︸                                ︷︷                                ︸

Riemann sum for the rest

,

where bk ∈ [k − 1, k] \ {0} can be chosen (MSE) optimally.

Usually κ = 1 suffices.
The variates W̃α ,n

0 , W̃
α ,n
1/n , . . . , W̃

α ,n
�nt /n can be generated by

sampling �nt  iid draws from a κ + 1-dimensional Gaussian
distribution and computing a discrete convolution.
Again, this requires only O(n logn) flops.
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Approximating x 7→ xα
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Numerical results: implied volatility smiles
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Towards variance reduction

While the hybrid scheme simulates the variance process V
efficiently, ceteris paribus it does essentially nothing to the
variance of the Monte Carlo pricer.

Indeed there is scope for improving the efficiency of the pricer
by deploying a “cocktail” of variance reduction methods.
To this end, we work with price estimators of the form

P̂n(k, t) :=
1
n

n∑
i=1

(Xi − α̂nYi) − α̂nE[Y],

where (X1, Y1), . . . , (Xn, Yn) are identical copies of a random
vector (X, Y) and α̂n is a free parameter, to be defined shortly.

17 / 29



Pricing under rough volatility Simulating rough volatility Variance reduction methods

Towards variance reduction

While the hybrid scheme simulates the variance process V
efficiently, ceteris paribus it does essentially nothing to the
variance of the Monte Carlo pricer.
Indeed there is scope for improving the efficiency of the pricer
by deploying a “cocktail” of variance reduction methods.

To this end, we work with price estimators of the form

P̂n(k, t) :=
1
n

n∑
i=1

(Xi − α̂nYi) − α̂nE[Y],

where (X1, Y1), . . . , (Xn, Yn) are identical copies of a random
vector (X, Y) and α̂n is a free parameter, to be defined shortly.

17 / 29



Pricing under rough volatility Simulating rough volatility Variance reduction methods

Towards variance reduction

While the hybrid scheme simulates the variance process V
efficiently, ceteris paribus it does essentially nothing to the
variance of the Monte Carlo pricer.
Indeed there is scope for improving the efficiency of the pricer
by deploying a “cocktail” of variance reduction methods.
To this end, we work with price estimators of the form

P̂n(k, t) :=
1
n

n∑
i=1

(Xi − α̂nYi) − α̂nE[Y],

where (X1, Y1), . . . , (Xn, Yn) are identical copies of a random
vector (X, Y) and α̂n is a free parameter, to be defined shortly.

17 / 29



Pricing under rough volatility Simulating rough volatility Variance reduction methods

Base estimator

Our reference estimator, which we call the Base estimator,
uses

X := f (St) :=



(St − S0ek)+, k ≥ 0,
(S0ek − St)+, k < 0,

Y := 0.

This is really just the “naive” estimator, except that we price
the out-of-the-money European call/put, which is less noisy,
and derive implied volatility from its price.
Without loss of generality, assume S0 = 1.
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Mixing formula

The well-known result of Romano and Touzi (1997) implies that

E[f (St)] = E
[
BS

(
(1 − ρ2)

∫ t

0
Vsds, SWt , k

)]
,

where BS is the appropriate Black–Scholes function,
dSWt /S

W
t =
√
Vt ρ dWt

This suggests that we could use

X := BS
(
(1 − ρ2)

∫ t

0
Vsds, SWt , k

)
.

This method alone is rather effective in reducing variance
when ρ ≈ 0, but its benefits evaporate as ρ → −1.
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Control variate

Inspired by the idea of Bergomi (2016) of using a timer option
as a control variate, we choose

Y := BS
(
ρ2

(
Q̂n −

∫ t

0
Vsds

)
, SWt , k

)
,

where Q̂n is a free parameter, “variance budget”, to be chosen
post simulation.

By a martingale argument,

E[Y] = BS(ρ2Q̂n, 1, k)
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Mixed estimator
Our “turbocharged” Mixed estimator (McCrickerd and
Pakkanen, 2017) is given by

X := BS
(
(1 − ρ2)

∫ t

0
Vsds, SWt , k

)
,

Y := BS
(
ρ2

(
Q̂n −

∫ t

0
Vsds

)
, SWt , k

)
.

We set, post simulation,

α̂n := −

∑n
i=1(Xi − Xi)(Yi − Yi)∑n

i=1(Yi − Yi)2
, Q̂n := max

i=1,...,n

( ∫ t

0
Vsds

)
i
.

Additionally, we couple (X2i−1, Y2i−1) and (X2i, Y2i) for any i ≥ 1
by using antithetic pairs (B,W) and (−B,−W) as drivers.
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Numerical results: Base estimator
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Numerical results: Mixed estimator
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Calibration experiment

Ultimately, the goal of this simulation methodology is to
calibrate the rough Bergomi model to a volatility surface.

We conduct a simple experiment to demonstrate what
difference using the Mixed estimator in calibration makes.
We calibrate the parameters η and ρ to a 3M rough Bergomi
reference smile at 19 points, minimising RMSE using L-BFGS-B.
We initialise the solver at the true parameter values and let it
run for 700 milliseconds.
Throughout the experiment, we use n = 1 000.
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Numerical results: calibration experiment
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Some alternative variance reduction methods

• Multilevel Monte Carlo — compatible with the hybrid
scheme, but does not appear to effective in reducing
variance in this setting (Mamallan, 2017).

• Importance sampling — seems unattractive as it would
need to be tuned strike by strike.

• Quasi Monte Carlo (Sobol sequences etc) — applicable
and useful here, albeit the speed-up appears not to be
dramatic.
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Implementation

Python implementation of turbocharged pricing along with a
Jupyter notebook are available from:

https://github.com/ryanmccrickerd/roughbergomi
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Finally. . .

Happy birthday Jim!
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